130 research outputs found

    INDIGO: a generalized model and framework for performance prediction of data dissemination

    Get PDF
    According to recent studies, an enormous rise in location-based mobile services is expected in future. People are interested in getting and acting on the localized information retrieved from their vicinity like local events, shopping offers, local food, etc. These studies also suggested that local businesses intend to maximize the reach of their localized offers/advertisements by pushing them to the maxi- mum number of interested people. The scope of such localized services can be augmented by leveraging the capabilities of smartphones through the dissemination of such information to other interested people. To enable local businesses (or publishers) of localized services to take in- formed decision and assess the performance of their dissemination-based localized services in advance, we need to predict the performance of data dissemination in complex real-world scenarios. Some of the questions relevant to publishers could be the maximum time required to disseminate information, best relays to maximize information dissemination etc. This thesis addresses these questions and provides a solution called INDIGO that enables the prediction of data dissemination performance based on the availability of physical and social proximity information among people by collectively considering different real-world aspects of data dissemination process. INDIGO empowers publishers to assess the performance of their localized dissemination based services in advance both in physical as well as the online social world. It provides a solution called INDIGO–Physical for the cases where physical proximity plays the fundamental role and enables the tighter prediction of data dissemination time and prediction of best relays under real-world mobility, communication and data dissemination strategy aspects. Further, this thesis also contributes in providing the performance prediction of data dissemination in large-scale online social networks where the social proximity is prominent using INDIGO–OSN part of the INDIGO framework under different real-world dissemination aspects like heterogeneous activity of users, type of information that needs to be disseminated, friendship ties and the content of the published online activities. INDIGO is the first work that provides a set of solutions and enables publishers to predict the performance of their localized dissemination based services based on the availability of physical and social proximity information among people and different real-world aspects of data dissemination process in both physical and online social networks. INDIGO outperforms the existing works for physical proximity by providing 5 times tighter upper bound of data dissemination time under real-world data dissemination aspects. Further, for social proximity, INDIGO is able to predict the data dissemination with 90% accuracy and differently, from other works, it also provides the trade-off between high prediction accuracy and privacy by introducing the feature planes from an online social networks

    Enfoques genómicos y transcriptómicos hacia la selección de plantas

    Get PDF
    Omics era has opened a new window to biology. Genomics and transcriptomics are two well-known fields by which plant selection and breeding are studied more easily and accurately. They provide useful information about the genes, transcripts, their functions those are the principal data for other subsequent approaches. Reference genomes of various plants are available and facilitate genome-based studies. The complex of genomic, transcriptomic data and the findings from variant methods like QTLs (quantitative trait loci), SNPs (single nucleotide polymorphism), CNVs (copy number variant), resequencing, GBS (genome-by-sequencing) are extremely important for plant selection in terms of price and time. The new workflows are routinely using different approaches and mixing them based on the genomic/transcriptomic information in their subsequent steps and are validated during the whole process toward screening genotypes possessing agronomically important desired trait. SNP-Seq presented hereinafter is a new approach for analyzing plants toward selection and screening by SNP sequencing in various genotypes simultaneously. It can accelerate the cycle of plant selection from genotypes to phenotypes in a reverse engineering way.La era Omica ha abierto una nueva ventana a la biología. La genómica y la transcriptómica son dos campos conocidos, con los cuales, la selección y el mejoramiento de plantas se estudian con mayor facilidad y precisión. Proporcionan información útil sobre los genes, las transcripciones, sus funciones y sirven como datos primordiales para otros enfoques posteriores. Los genomas de referencia de varias plantas han sido secuenciados, y están disponibles, facilitando así el acceso a información ómica indispensable para llevar a cabo estudios basados ​​en estos mismos genomas. El total de datos genómicos, transcriptómicos y los hallazgos de métodos variantes que van desde QTL (rasgo cuantitativo), PSN (polimorfismo de un solo nucleótido), NCV (número de copias variante), GBS (genoma por secuencia) son extremadamente importantes para la selección y el mejoramiento de plantas en términos de precio y tiempo. Los nuevos flujos de trabajo utilizan diferentes enfoques basados ​​en la información genómica / transcriptómica en pasos posteriores mezclándolos y se validan durante todo el proceso para seleccionar genotipos que posean un rasgo deseado agronómicamente importante. SNP-Seq, que se presenta en este artículo, es un nuevo enfoque para analizar las plantas hacia la selección y la detección mediante secuenciación de SNP en varios genotipos simultáneamente. Este proceso puede acelerar el ciclo de selección de plantas desde los genotipos a los fenotipos en una forma de ingeniería inversa. &nbsp

    Three-Dimensional Bioprinting Materials with Potential Application in Preprosthetic Surgery

    Get PDF
    Current methods in handling maxillofacial defects are not robust and are highly dependent on the surgeon’s skills and the inherent potential in the patients’ bodies for regenerating lost tissues. Employing custom-designed 3D printed scaffolds that securely and effectively reconstruct the defects by using tissue engineering and regenerative medicine techniques can revolutionize preprosthetic surgeries. Various polymers, ceramics, natural and synthetic bioplastics, proteins, biomolecules, living cells, and growth factors as well as their hybrid structures can be used in 3D printing of scaffolds, which are still under development by scientists. These scaffolds not only are beneficial due to their patient-specific design, but also may be able to prevent micromobility, make tension free soft tissue closure, and improve vascularity. In this manuscript, a review of materials employed in 3D bioprinting including bioceramics, biopolymers, composites, and metals is conducted. A discussion of the relevance of 3D bioprinting using these materials for craniofacial interventions is included as well as their potential to create analogs to craniofacial tissues, their benefits, limitations, and their application

    An Architecture for Information Commerce Systems

    Get PDF
    The increasing use of the Internet in business and commerce has created a number of new business opportunities and the need for supporting models and platforms. One of these opportunities is information commerce (i-commerce), a special case of ecommerce focused on the purchase and sale of information as a commodity. In this paper we present an architecture for i-commerce systems using OPELIX (Open Personalized Electronic Information Commerce System) [11] as an example. OPELIX provides an open information commerce platform that enables enterprises to produce, sell, deliver, and manage information products and related services over the Internet. We focus on the notion of information marketplace, a virtual location that enables i-commerce, describe the business and domain model for an information marketplace, and discuss the role of intermediaries in this environment. The domain model is used as the basis for the software architecture of the OPELIX system. We discuss the characteristics of the OPELIX architecture and compare our approach to related work in the field

    A Current Overview of Materials and Strategies for Potential Use in Maxillofacial Tissue Regeneration

    Get PDF
    Tissue regeneration is rapidly evolving to treat anomalies in the entire human body. The production of biodegradable, customizable scaffolds to achieve this clinical aim is dependent on the interdisciplinary collaboration among clinicians, bioengineers and materials scientists. While bone grafts and varying reconstructive procedures have been traditionally used for maxillofacial defects, the goal of this review is to provide insight on all materials involved in the progressing utilization of the tissue engineering approach to yield successful treatment outcomes for both hard and soft tissues. In vitro and in vivo studies that have demonstrated the restoration of bone and cartilage tissue with different scaffold material types, stem cells and growth factors show promise in regenerative treatment interventions for maxillofacial defects. The repair of the temporomandibular joint (TMJ) disc and mandibular bone were discussed extensively in the report, supported by evidence of regeneration of the same tissue types in different medical capacities. Furthermore, in addition to the thorough explanation of polymeric, ceramic, and composite scaffolds, this review includes the application of biodegradable metallic scaffolds for regeneration of hard tissue. The purpose of compiling all the relevant information in this review is to lay the foundation for future investigation in materials used in scaffold synthesis in the realm of oral and maxillofacial surgery

    Volatile organic compounds: Plant natural defense mechanisms against herbivorous arthropods and an opportunity for plant breeding of cotton

    Get PDF
    Plants' natural defense mechanisms against herbivorous arthropods include the emission of volatile organic compounds (VOC). Nowadays field observations about plant-insect interactions are better understood thanks to the increasingly scientific investigations over recent decades. There are now more precise data about molecules, action modes and physiological and genetic bases of these plant defense mechanisms. VOC present an important potential for crop protection and pesticide use reduction. In the present review, we focus on the latest research advances about plant protection provided by VOC, considering experimental methods of volatile analysis and the involved genes toward genetic improvement of natural defense in the future varieties, particularly for Upland cotton Gossypium hirsutum

    Challenges in Software Evolution

    Get PDF
    Today’s information technology society increasingly relies on software at all levels. Nevertheless, software quality generally continues to fall short of expectations, and software systems continue to suffer from symptoms of aging as they are adapted to changing requirements and environments. The only way to overcome or avoid the negative effects of software aging is by placing change and evolution in the center of the software development process. In this article we describe what we believe to be some of the most important research challenges in software evolution. The goal of this document is to provide novel research directions in the software evolution domain

    Physiological effects of water deficit on two oil palm (Elaeis guineensis Jacq.) genotypes

    Get PDF
    Water supply is the main limiting factor that affects oil palm (Elaeis guineensis Jacq.) yield. This study aimed to evaluate the gas exchange and photosynthetic capacity, determine the physiological effects and assess the tolerance potential of oil palm genotypes under water-deficit conditions. The two oil palm commercial genotypes IRHO1001 and IRHO7010 were exposed to soil water potentials of -0.042 MPa (field capacity or well-watered) or -1.5 MPa (drought-stressed). The leaf water potential and gas exchange parameters, including photosynthesis, stomatal conductance, transpiration and water use efficiency (WUE), as well as the photosynthesis reduction rate were monitored at 4 and 8 weeks after treatment. The IRHO7010 genotype showed fewer photosynthesis changes and a smaller photosynthetic reduction under the prolonged water deficit conditions of 23% at 4 weeks after the treatment as compared to 53% at 8 weeks after treatment, but the IRHO1001 genotype showed 46% and 74% reduction at the two sampling times. ‘IRHO7010’ had a higher stomatal conductance and transpiration potential than ‘IRHO1001’ during the water shortage. The WUE and leaf water potential were not different between the genotypes during dehydration. The data suggested that ‘IRHO7010’ had a higher photosynthetic capacity during the drought stress and was more drought-tolerant than ‘IRHO1001’
    corecore